A novel quantitation approach for maximizing detectable targets for offensive/volatile odorants with diverse functional groups by thermal desorption-gas chromatography-mass spectrometry
نویسندگان
چکیده
A multitude of analytical systems are needed to analyze diverse odorants with various functionalities. In this study, an experimental method was developed to assess the maximum covering range of odorants using a single experimental setup consisting of a thermal desorber-gas chromatography-mass spectrometry system. To this end, a total of 20 offensive odorants (aldehyde, ketone, ester, alcohol, aromatic, sulfide, amine, and carboxyl) were selected and tested by a single system. The analytical results of standards and environmental samples were evaluated in a number of respects. In the analysis of the standards, all targets were quantified via Carbopack (C + B + X) tube sampling while operating the thermal desorber at -25 °C. The method detection limits of 18 targets (exception of 2 out of the 20 targets: acetaldehyde and methanethiol) were excellent (mean 0.04 ± 0.03 ppb) in terms of their odor threshold values (74.7 ± 140 ~ 624 ± 1,729 ppb). The analysis of organic fertilizer plant samples at a pig farm (slurry treatment facility, compost facility, and ambient air) confirmed the presence of 18 odorants from 0.03 ppb (dimethyldisulfide, ambient sample) to 522 ppb (methyl ethyl ketone, slurry treatment facility). As such, our method allowed simultaneous quantitation of most key odorants with sufficient reliability and sensitivity.
منابع مشابه
Quantitative Determination of Common Urinary Odorants and Their Glucuronide Conjugates in Human Urine
Our previous study on the identification of common odorants and their conjugates in human urine demonstrated that this substance fraction is a little-understood but nonetheless a promising medium for analysis and diagnostics in this easily accessible physiological medium. Smell as an indicator for diseases, or volatile excretion in the course of dietary processes bares high potential for a seri...
متن کاملAnalysis of human breath samples using a modified thermal desorption: gas chromatography electrospray ionization interface.
A two-stage thermal desorption/secondary electrospray ionization/time-of-flight mass spectrometry for faster targeted breath profiling has been studied. A new secondary electrospray ionization (SESI) source was devised to constrain the thermal desorption plume and promote efficient mixing in the ionization region. Further, a chromatographic pre-separation stage was introduced to suppress interf...
متن کاملTrace determination of airborne polyfluorinated iodine alkanes using multisorbent thermal desorption/gas chromatography/high resolution mass spectrometry.
A novel gas chromatography/high resolution mass spectrometry method coupled with multisorbent thermal desorption cartridges has been developed for the determination of volatile neutral polyfluorinated iodine alkanes (PFIs) in airborne samples. It allows, for the first time, simultaneous analysis of four mono-iodized perfluorinated alkanes, three diiodized perfluorinated alkanes and four mono-io...
متن کاملCharacterization and Quantification of Livestock Odorants using Sorbent Tube Sampling and Thermal Desorption coupled with Multidimensional Gas Chromatography–Mass Spectrometry–Olfactometry (TD-MDGC-MS-O)
Characterization and quantification of livestock odorants is one of the most challenging analytical tasks because odor-causing gases are very reactive, polar and often present at very low
متن کاملCharacterization of ballpoint pen inks by thermal and desorption and gas chromatography-mass spectrometry.
The characterization of ink on paper is of importance for dating and comparing questioned ink entries in forensic document examination. Inks are commonly characterized by their colorant profile that is identified by well-established analytical methods. Numerous ink formulations show identical colorant profiles, though. In order to differentiate inks that are not distinguishable by colorant anal...
متن کامل